1456 Short Reports

ceric sulphate as spray reagent. The EtOH extractive of the dry plant material (2 kg) was macerated with EtOAc and the soluble fraction (92 g) was chromatographed over Si gel (1 kg). Fifty fractions (500 ml each) were collected using hexane containing increasing amounts of Et₂O. The hexane-Et₂O (1:1) eluates (fraction 22-24, 3.686 g) yielded substance E (1.068 g) after purification by PLC. Subsequent fractions 35-47 of the same eluant (2.786 g) on crystallization with MeOH yielded substance F (500 mg).

Substance E (5,7-dihydroxy-3-8,4'-trimethoxyflavone). Yellow needles from dil. MeOH mp 172-73°, R, 0.35 (hexane-Et₂O 1:1). It produced magenta colour with Mg/HCl and an intense yellow with ammonia. UV (MeOH): 277, 312, 358 nm (log ε 4.37, 3.83, 3.7); MeOH/AlCl₃: 285, 311, 352, 412 nm; MeOH/ NaOAc: 285, 307, 390 nm: MeOH/NaOMe: 285, 305, 415 nm. PMR (acetone-d₆) ppm: 3.9 (9H, s, 3OMe), 6.3 (1H, s, C6), 7.1 (2H, d, J = 9 Hz, C3'5'), 8.1 (2H, d, J = 9 Hz, C2'6'). MS: m/e344 (M⁺). Found: C, 62.2; H, 4.2 C₁₈H₁₆O₇ requires C, 62.0; H, 4.2%. The diacetate (C₂₂H₂₀O₉) crystallized from CHCl₃-MeOH, mp 160-62°. UV (MeOH): 265 and 340 nm. PMR ppm: 2.35, 3.45 (3H each, s, OAc), 3.84 (3H, s, OMe), 3.9 (6H, s, 2OMe), 6.8 (1H, s, C6), 7.12 (2H, d, J = 9 Hz, C3'.5'), 8.12 (2H, d, 9 Hz, C2',6'). The monomethylether (C₁₉H₁₈O₇) crystallized from dil. EtOH, mp 161°. PMR ppm: 3.9 (12H, s, 4OMe), 6.4 (1H, s, C6), 7.0 (2H, s, J = 9 Hz, C3',5'), 8.05 (2H, d, J = 9 Hz, C2',6'). The dimethyl ether $(C_{20}H_{20}O_7)$ crystallized from dil. MeOH, mp 156°, UV (MeOH): 272, 310, 350 nm. PMR ppm: 3.9 (15H, s, 50Me), 6.4 (1H, s, C6), 7.0 (2H, d, J = 9 Hz, C3',5'), 8.05 (2H, d, J = 9 Hz, C2',6').

Substance F (conyzatin). Yellow needles from MeOH, mp 209°. With Mg/HCl it gave a magenta colour and an intense yellow spot with NH₃. R_f 0.4 (hexane-Et₂O 1:3), UV (MeOH): 276, 314, 362, 402 nm (log ε 4.42, 4.25, 3.90, 3.98); MeOH/AlCl₃: 286, 317, 355, 400, 421 nm: MeOH/NaOAc: 287, 305, 414, MeOH/NaOMe: 288, 305, 416 nm. PMR (DMSO-d₆) ppm: 3.83 (3H, s, OMe), 3.9 (12H, s, 40Me), 6.25 (1H, s, C6). 7.4 (2H, s, C2',6'), MS: m/e (M^+) 404. Found: C, 58.35: H, 6.1 C₂₀H₂₀O₉ requires C, 58.30; H, 6.05%. The diacetate was obtained as amorphous powder from hexane-C₆H₆, mp 152°. PMR (CCl₄) ppm: 2.23, 2.29, (3H each, s, OAc), 3.8 (12H, s, 40Me), 3.9 (3H,

s, OMe), 6.45 (1H, s, C6), 7.3 (2H, s, C2',6'). PMR (DMSO- d_6) ppm: 2.3 (6H, br s, 2OAc), 3.75–3.85 (12H, br s, 4OMe), 4.0 (3H, s, OMe), 7.05 (1H, s, C6), 7.38 (1H, s, C2'), 7.6 (1H, s, C6'). Found: C, 58.1; H, 4.8 $C_{24}H_{24}O_{11}$ requires C, 59.12, H, 4.9%. The monomethyl ether crystallised from MeOH, mp 170°. UV (MeOH): 275, 308, 340, 362 nm; MeOH/AlCl₃: 285, 320, 356, 400 nm. PMR (acetone- d_6) ppm: 3.8 (3H, s, OMe), 3.85 (3H, s, OMe), 3.86 (9H, s, 3OMe), 3.91 (3H, s, OMe), 6.4 (1H, s, C6), 7.46 (2H. s, C2',6'). MS: m/e 418 (M⁺). The dimethyl ether crystallized from MeOH, mp 192°. UV (MeOH): 277, 308, 356 nm; UV (AlCl₃, NaOAc): no change PMR (DMSO- d_6) ppm: 3.78 (3H, s, OMe), 3.8 (3H, s, OMe), 3.85 (3H, s, OMe), 3.88 (9H, s, 3OMe), 3.98 (3H. s, OMe), 6.3 (1H, s, C6), 7.42 (2H, s, C2',6'). MS: m/e 432 (M⁺).

Acknowledgements—The authors thank Mr. Edward Samson for technical assistance during this work. They are also thankful to Dr. B. S. Joshi CIBA Research Centre, Bombay, for providing the hibiscetin heptamethyl ether and to Dr. P. R. Jefferies, University of Western Australia, for providing the 5,7-dihydroxy 3,8,4'-trimethoxyflavone.

REFERENCES

- Domiainguer, X. A., Quintero, G. and Butruille, D. (1972) Phytochemistry 11, 1855.
- 2. Saleh, M. R. I. (1957) Proc. Pharm. Soc. Egypt Sci. Ed. 39, 107.
- Bohlmann, F., Bornowski, H. and Arndt, C. (1965) Chem. Ber. 98, 1736.
- 4. Bohlmann, F. and Grenz, M. (1972) Chem. Ber. 105, 3123.
- Bhakuni, D. S., Dhar, M. L., Dhawan, B. N. and Mehrotra, B. N. (1969) *Indian J. Exp. Biol.* 7, 250.
- Brown, R. F. C., Gilham, P. T., Hughes, G. K. and Ritche, E. (1954) Australian J. Chem. 7, 181.
- Dawson, R. M., Henrick, C. A., Jefferies, P. R. and Middleton, E. J. (1965) Australian J. Chem. 18, 1871.
- Henrick, C. A. and Jefferies, P. R. (1964) Australian J. Chem. 17, 934.
- 9. Joshi, B. S. and Kamat, V. N. (1970) Phytochemistry 9, 889.

Phytochemistry, 1977, Vol. 16, pp. 1456-1457. Pergamon Press Printed in England.

BIFLAVONES AND FLAVONOL-O-GLYCOSIDES FROM JUNIPERUS MACROPODA

MOHAMMAD ILYAS, NAJMA ILYAS and HILDEBERT WAGNER
Institut für pharmazeutische Arzneimittellehre der Universität München, BRD

(Received 18 February 1977)

Key Word Index—Juniperus macropoda; Cupressaceae; amentoflavone; hinokiflavone; isocryptomerin; quercetagetin-3-O-rhamnoside; quercetin-3-O-rhamnoside; kaempferol-3-O-glucoside.

Powdered and dried leaves of Juniperus macropoda Boiss. were extracted with acetone in a Soxhlet. The extract was dried under reduced pressure and treated with hot water. The insoluble portion was purified by column chromatography on silica gel to give three biflavones by preparative TLC. They were characterized as amentoflavone, hinokiflavone and isocryptomerin, by mp and comparison of NMR spectra of their methyl and acetyl derivatives with those of authentic samples.

The water soluble portion was extracted with butanol and separated by column chromatography followed by TLC on silica gel into three fractions A, B, and C. On hydrolysis with 10% HCl fractions A and B gave quercetagetin, mp 320-324° and quercetin, mp 315° respectively and a common sugar rhamnose (TLC), while fraction C gave kaempferol, mp 284° and glucose. The aglycones were characterized by co-chromatography on TLC and by comparing the mp's of their acetates with authentic

samples. The glycosides were characterized as quercetagetin-3-O-α-L-rhamnoside (1), mp 195°, quercetin-3-O-

 $1, R_1 = OH, R_2 = OH, R_3 = Rha$ 2. R₁ = H, R₂ = OH, R₃ = Rha 3. R₁ = H, R₂ = H, R₃ = Glc

 α -L-rhamnoside (2), mp 322° and kaempferol-3-O- β -Dglucoside (3), mp 180°, by UV (using diagnostic reagents) and NMR.

Further confirmation of the identity of the glycosides was furnished by co-chromatography on TLC (cellulose and silica gel) using a number of solvent systems.

This is the first report of the co-occurrence of biflavones and flavonol-O-glycosides in a Juniperus species. Both classes of flavonoid have been recorded separately in other Juniperus species [1-6].

Acknowledgements—One of us (M.I.) wishes to thank Alexander von Humboldt-Stiftung, Government of West Germany for the award of fellowship and Dr. Wazahat Husain, Department of Botany, Aligarh Muslim University, India, for the identification of plants, which were collected on the campus of this University.

REFERENCES

- 1. Swada, T. (1958) J. Pharm. Soc. (Japan) 78, 1023.
- 2. Kariyone, T. (1962) J. Pharmacog. Soc. (Japan) 16, 1.
- 3. Mashima, T., Okigawa, M. and Kawano, N. (1970) J. Pharm. Soc. (Japan) 90, 512.
- 4. Pelter, A., Warren, R., Hameed, N., Ilyas, M. and Rahman, W. (1971) J. Indian Chem. Soc. 48, 204.
- 5. Mashima, T., Okigawa, M. and Kawano, N. (1970) Yakugaku Zasshi 90, 512.
- Hameed, N., Ilyas, M., Rahman, W., Okigawa, M. and Kawano, N. (1973) Phytochemistry 12, 1494.

Phytochemistry, 1977, Vol. 16, pp. 1457-1458. Pergamon Press. Printed in England

AN ISOFLAVAN PHYTOALEXIN FROM LEAVES OF GLYCYRRHIZA GLABRA

JOHN L. INGHAM

Phytochemical Unit, Department of Botany, University of Reading, Reading RG6 2AS, England

(Received 25 March 1977)

Key Word Index—Glycyrrhiza; Leguminosae; licorice; isoflavan; phytoalexin; antifungal compound.

Abstract—An isoflavonoid phytoalexin isolated from the leaves of Glycyrrhiza glabra has been characterised as 7,2'-dihydroxy-3',4'-dimethoxyisoflavan

INTRODUCTION

The roots of European licorice (Glycyrrhiza glabra L.; Leguminosae, tribe Astragaleae) and other members of this pharmacologically important genus are rich in isoflavonoid constituents. Representatives of the coumestan [1], isoflavan [2, 3], isoflavone [4-10] and isoflavene [5] groups have all been obtained from this source. In contrast, there is apparently no evidence for the production of leaf isoflavonoids by any Glycyrrhiza species. However, during a recent investigation it was found that the fungus-inoculated leaves of G. glabra var. glabra accumulated large quantities of a phenolic isoflavan phytoalexin [11]. The present paper describes the isolation and identification of this compound as 7,2'dihydroxy-3',4'-dimethoxyisoflavan 1 (isomucronulatol).

RESULTS AND DISCUSSION

Detached leaflets were inoculated with droplets of a conidial suspension of Helminthosporium carbonum Ullstrup [12, 13], incubated for 48 hr (20°; ca 400 lx) and the resulting diffusate then collected and extracted (EtOAc)

as previously described [12]. Si gel TLC (CHCl₃-MeOH, 50:1) afforded a single, non-fluorescent fraction (ca R_f 0.5) which proved to be homogeneous when chromatographed in several additional solvent systems. This compound (1) reacted strongly to both diazotised p-nitroaniline (yellow/brown) and Gibbs reagent [13] (ultramarine). Only traces of 1 were present in extracts of the control diffusate [12].

MS analysis gave the molecular ion at m/e 302 (corresponding to C₁₇H₁₈O₅) and revealed a typically

1: $R_1 = R_2 = H$; $R_3 = R_4 = Me$